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An investigation was made of the free vibrations of gas bubbles in viscoelastic polymeric liquids, taking
account of all dissipation mechanisms (rheological, acoustical, and thermal). Along with the effects of shear
viscoelasticity {1], account is taken of relaxation phenomena with volumetric deformation of the medium. The
dynamics of gas bubbles in incompressible viscoelastic media without taking account of heat dissipation was
investigated in [2-4].

The study of dissipation effects with pulsations of gas bubbles in liquids is of interest for a description of
the behavior of bubbles of mixtures under dynamic conditions [5]. It is well known [6] that the damping of the
vibrations of gas inclusions in a viscous liquid is due to the following main reasons: heat dissipationas a
result of heat transfer between the gas contained in the bubble and the surrounding medium; acoustical dissipa-
tion due to losses for the emission of sound by the oscillating bubbles; viscous dissipation, connected with the
irreversible character of processes of the transfer of momentum in the medium and with localization in the
case of an incompressible liquid near the gas—liquid interface. Within the framework of a linear approxima-
tion, an analysis of the above-listed effects for the case of a Newtonian liquid was made in [7], where the addi-
tivity of the above mechanisms of dissipation with small values of the total decrement of the damping of the
vibrations of the bubble is shown. The solution of an analogous problem in the case of the pulsations of bubbles
in polymeric liquids makes it necessary to take account of additional factors, above all the rheological special
characteristics of the medium, connected with the appearance of phenomena of viscoelasticity. We note that
the effects of viscoelasticity can approximately be taken into consideration through a dynamic boundary con-
dition at the surface of the bubble, neglecting the accompanying effect of rheology and compressibility. An
analogous method was used, for example in [7-9], taking account of the compressibility of a Newtonian liquid '
in a quasiacoustical approximation [10]. However, using such an approach it is not possible to evaluate the
absorption of the sound emitted by an oscillating bubble, which is of independent interest (with the solution of
the external hydrodynamic problem for a bubble in [7-9] the liquid is assumed to be ideal). In view of this, an
investigation is made below of the dynamics of a bubble in a compressible viscoelastic liquid within the frame-
work of a combined analysis of the rheology and the compressibility; here, the solution is first found to the
problem of the emission of sound by an oscillating bubble, taking account of the rheology of the medium.

Limiting ourselves in what follows to the framework of a linear approximation, for the deviator part of
the tensor of the stresses in the liquid we take the three-constant Oldroyd equation[1], used for a description
of the mechanical behavior of a number of dilute polymer solutions,
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where 7;; and s;; are the deviators of the tensor of the stresses and the tensor of the deformation rates,
respectively; p is the mechanical pressure; vi are the components of the velocity vector; Ayand A, arethe times
of the relaxation and the retardation, respectively; 5, is the viscosity. For the spherical part of the stress
tensor we take the equation [11] )
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where u is the relative volumetric deformation; K, is the module of the volumetric elasticity; 7| and T, are
the relaxation and retardation times of the volumetric deformation, respectively. Equation (2) describes the
volumetric deformation with the presence of one internal relaxation process of arbitrary nature in the medium
f12].

We denote quantities relating to the gas and the liquid respectively by the subscripts 1 and 2. For the
density p, and-the pressure p, in the liquid we take
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where py) and pyg are equilibrium values; s, and f, are small perturbations; r is the radial coordinate of the
spherical system of coordinates r, 0, ¢, with its origin at the center of the bubble. The radial component of the
velocity in the liquid is denoted by q,(r, t). Taking account of the spherical symmetry of the flow induced by
the radial vibrations of the bubble, we have from (1)-(3)
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We postulate that the gas bubble-has the equilibrium radius R, and performs small free damping vibrations
with the complex frequency h:
(7

R = Ry + AR, AR = 8eit.
Let '
Bs,/8t = hs,, 8f,/0t = hf,, 0q,/0t = hq,. O1,./0t = hx,,,
Btoe/ Ot = hgp »
Then, from system (4)-(6) we have for q,
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Setting d,= ¢y, for the potential ¢ we obtain the Helmholtz equation with the complex parameter
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The solution of Eq. (8) corresponding to diverging waves has the form
rg = Aexp(ht — mr).
For the complex rate c of propagation of spherical sound waves, emitted by a bubble oscillating in a
compressible viscoelastic liquid, we have the dispersion equation
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We determine the constant A from the kinematic condition at the surface of the bubble taking account of
(7). We obtain
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For the perturbation of the pressure in the liquid we now have
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From (9) we find an expression for the pressure at the surface of the bubble
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In the case of a Newtonian liquid (1, = 7,=A; =A,=0), the dynamic correction to the pressure at the sur-
face of a pulsating bubble assumes the form
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We note that formula (11) differs from the corresponding expression for f,, found according to the linrearized
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quasiacoqstical theory [7-91, by the addition of terms taking account of the combined eifect of the viscosity and
compressibility of the liquid. For not too small bubbles in a slightly viscous and slightly compressible liguid
the contribution of these terms is small.

The dynamic boundary condition at the surface of the bubble has the form
PR, &) = pi(R, 1) — 20R- + 7, (R, ¥), (12)
where p;(R, t) is the pressure in the gas at the surface of the bubble; ¢ is the coefficient of surface tension.

Determining 7..,. (R, t) and substituting relationship (10) into (12), with an exactness up to linear guantities we
find
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We postulate that the bubble contains an ideal gas with the equation of state
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where T; is the temperature; cp and cy are the specific heat capacities with constant pressure and volume.
We set
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where ¢ and s; are small perturbations of the temperature and the density.

The linearized system of equations of the conservation of mass, momentum, and energy for the gas in

the bubble is written in the form
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where g, is the radial component of the velocity in the gas; y is the coefficient of thermal conductivity.

We set
8q,/0t = hqy, 8s,/8t = hs;, 20/t = hO.
Solving [7] the system of equations (14), determining p;(R, t), and taking into consideration that the pres-
sure p, in the bubble satisfies the equilibrium equation, from (13) we obtain a transcendental equation for h
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With determination of the solution of the system (14) for the temperature Ty, the boundary condition
Ty (R) = Ty =const, adopted in [6-9, 13], was used. A need to consider the external problem of thermal conduc-

tivity can arise only in the presence of phase transitions at the interface or with strong constriction of the gas
in the bubble, which is excluded by the statement of the problem under consideration.
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Equation (15) makes it possible to calculate the frequency and the damping of the vibrations of a bubble
taking account of the combined effect of thermal, acoustical, and rheological dissipation. We also give an
equation for h, characterizing only one definite form of dissipation. The thermal deformation is characterized
by the equation ‘
ki = — (9o B8) 7 (6 (oy) — 20R5 ). (16)
Taking account of acoustical dissipation leads to the equation
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where k is the index of the polytrope in the equation for the gas in a bubble
PR, t) = pi, (1 — 3kR;AR).
Finally, taking account only of rheological dissipation leads to the following exact solution for h [2]:
Re{hs}= —(4 + B2 — a/3, Im{h)=1 3(4 — B)2, (18)
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Let us determine the total logarithmic decrement of the damping A and the frequency e of the vibrations
of the bubble using the formulas

A = —2xRe{h}m-1{R}, o =(2n)Im{h},

and denote by Ay, Ay, and Aj the thermal, acoustical, and rheological decrements of the damping, respectively.
The absorption at a wavelength of sound w, emitted by an oscillating bubble, is determined by the relationship

x = 2(Im{c}Re-1{c})/(1 — Im{c}Re{h} Re-*{c}Im~1{R}).
The values of h, hy-h; were found numerically from relationships (15)-(18) in a BESM-4 digital computer. The
thermophysical parameters of the air in the bubble, and the pressure, the density, and the surface tension in
the liquid were taken as follows: T,=293°K; y=1.4; x=0.0257 J/Am" sec - deg); cp=10° J/kg " deg); py=10°
N/m?; pgy=10%kg/m?; ¢=0.05 N/m. The values of the rheological and acoustical parameters were selected in
accordance with the experimental data of [14-16] from the range characteristic for a number of polymer solu-
tions.

The solutions of the transcendental equations (15) -(17) were deter mined by an iteration method, The
value of the index of the polytrope k (1=k=1.4) in finding h, and hy was determined by linear interpolation from
the condition of the consistency of the natural frequencies of the vibrations, calculated using Eqgs. (17), (18},
and (15), respectively. For a verification of the correctness of the calculation, a calculation was first made
of the decrements of the damping of air bubbles in water at a temperature of 20°C. The results obtained were
compared with the data of [7].

Some characteristic curves for viscoelastic liquids are given in Figs. 1~-4. Curve 1 corresponds to a
Newtonian liguid (A =A,=T7; =7,=0); curves 2, 3 correspond to a liquid with shear viscoelasticity (r;=7,=0)
with A =107 gec and Ay=5" 10“3, 2:1078 sec, respectively; curves 4, 5 correspond to a liquid with shear and
volumetric viscoelasticity with A, =107% sec, A,=2-107° sec, 7, =10"1? sec, and 7, =1.5° 10-10, 2.10"10 sec,
respectively. For all the curves 1,=10"% kg/(m - sec): Ky=2-10° N/m?,

It follows from the curves that taking account of shear viscoelasticity leads to a decrease in the total
decrement of the damping A (Fig. 1). This effect appears for medium and small gas inclusions and is rein-
forced with a decrease in the radius of the bubbles. Calculations showed that, with a rise in the viscosity of
the liquid, the effect of shear viscoelasticity rises; here, there is an increase in the characteristic dimension
of the bubbles, the vibrations of which are subject to viscoelastic effects.

The dependence of the effective index of the polytrope k on the radius of the bubble is shown in Fig, 2,
It can be seen that, for large bubbles, the value of k is close to v, while, for small values (R;<107° m), it coin-
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cides with the isothermal value k=1. We note that the form of the curve k=k(Ry) does not change with a vari-
ation of the rheological parameters of the medium and is determined only by thermal effects [7].

As calculations showed, the natural frequency of the vibrations of bubbles taking account of shear visco-
elasticity rises only slightly; however, this is observed only for very small values of Ry~10"¢ m, for which
k=1. The volumetric viscoelasticity has no significant effect on the damping and the frequency of the vibra-
tions of gas inclusions (curves 3-5 in Figs. 1,3 coincide).

Figure 3 illustrates the relative contribution to the total decrement of the damping A of the rheological,
acoustical, and thermal dissipation mechanisms (A'=A;+A,+Ag). It can be seen that the effect of shear visco-
elasticity leads to an increase in the range of bubble sizes; the damping of the bubbles is determined predomi-
nantly by heat dissipation and to a decrease in the relative role of rheological dissipation, which continues to
dominate for small inclusions. We note that the relative contribution of acoustical dissipation changes only
insignificantly when the viscoelasticity is taken into consideration (curves 1-3 on the scale of Fig. 3b come
together into one curve). This is connected with the fact that the rheological dissipation remains considerable
in the case of medium and small bubbles, for which the relative role of acoustical dissipation is not great. As
a result of this, with an investigation of the influence of viscoelastic effects on the damping of such bubbles it is
permigsible, with a determined degree of approximation, to assume that the liquid is incompressible. Calcula-
tions show that the error arising from such an assumption in determination of the value of A for bubbles with
Ry <10~¢ m does not exceed 10%, and is lowered with an increase in the viscosity of the liquid or a decrease in
the radius of the bubbles.

As follows from Fig. 3d, the rheological, acoustical, and thermal mechanisms of dissipation in a visco-
elastic liquid, as in a Newtonian liquid, are additive in a wide range of bubble sizes. Slight deviations from
additivity are observed only for small bubbles. For such inclusions, superposed effects appear, due to the
combined contributions of different dissipation mechanisms, which are not taken into consideration in A'. As a
result of this, the value of A' is found to be somewhat lower than the total decrement of the damping A. We note
that, in a viscoelastic liquid, the deviation of the value of A' from A is less than in a Newtonian liquid. In view
of this, with an investigation of the damping of bubbles in a viscoelastic liquid, a separate investigation can be
made of different dissipation mechanisms (including rheological [3]), with a smaller error than in a Newtonian
liquid.

Figure 4 characterizes the absorption of sound, emitted by an oscillating bubble. It can be seen that the
volumetric and shear viscoelasticities exert an opposite effect on the damping of the sound waves and lead,
correspondingly, to a rise or a decrease in the value of . Under these circumstances, the absorption of
sound in a liquid with volumetric and shear viscoelasticity is found to be greater than in a Newtonian liquid
with the same viscosity. This result is in agreement with the experimental data of [17], pointing to a decrease
in the cavitational noise in a liquid with polymer additives.
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